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: SOLAR ATMOSPHERIC DYNAMICS
I. INTRODUCTION

A} The goal of this research is to study solar atmospheric waves and their
£ role in heating the chromosphere and corona. To this end we are calculating
the propagation of radiating acoustic shock waves and their effect on solar

spectral lines. The ability of acoustic waves to heat the corona has been

cast into doubt because they are not observed to carry sufficient energy into

ot o= s e A

the transition region and because the corona is observed to consist of magnetic
flux tubes. To clarify this issue we have made detailed theoretical studies

of acoustic wave flux and heating of the chromosphere and are developing a
"modal" code to calculate magnetic type wave propagation. As a preliminary

step we have studied the wave vector surface of Magneto-Acoustic-Gravity Waves.
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II. RADIATIVE SHOCK DYNAMICS

The development of computer codes to study radiating shocks was begun.
These programs will be applied to study the heating of solar and stellar chromospheres
by acoustic waves and the detailed analysis of spectral line profiles in the
presence of acoustic waves. The first stage in this project was the development
of a grey-LTE-continuum radiation hydradynamic code, which is described below.
The dynamics is determined by the equations of mass and momentum conservation.

Conservation of Mass:

where m is the mass column density of position R.
Conservation of Momentum:

3l 3
=T ° " 3m (P +Q) - g,

where Q is an artifical viscosity to stabilize the numerical calculations.
al, 2 2 . U
9 ={p (5% g M % o
0
otherwise

where [ is a constant with the dimensions of a length.

Velocity U and position R are related by
2R
5T " u.

These equations are solved by dividing the atmosphere into layers of given

mass column density A -mj; and transforming the differential

Tie172 = Mie1
equations into finite difference equations on this Lagrangian grid (Christy,

1964; Richtmyer and Morton, 1967).

n+l/2

The velocity U and position Pjn are defined at the zone boundaries,

n+l/2 _

J

with the velocity at the half integral times t t? 4172 At and the

position at the integral times t". All the other variables are defined at
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the zone centers j+1/2 and integral times t?. The finite difference equations

. n+l/2 n+1 n+1
are solved explicitly for Uj , then Rj , thenp j+1/2° and finally
Q giijg by making a sweep through the grid and solving the finite difference

equations in the following order:

First solve

1
g2 oyn’? pn ph itz el
J J o j+¥l/2 =" j=1/2 j+l/2 j=1/2
n = -8~ Am .,
At J
. n+l/2
for the velocity Uj M sy J =22, ciien , N-1, where Amj = 172 ( Amj+l/2 + Amj-1/2)
and 8my,) ., = my,; -n; and At = 172 ( at™120 atPT1/2) ang agPHL/2 o gnel _gn,
Second solve
n+1 n
0 DR I VS V7.
Atn+1/2 - J
for the position of the zone boundaries Rjn+l, j=1, ..... , N. Third solve
n+l _ R n+l
J+l J N
Am, T n+l
j+ls2 j+1/2
for the density °i+?;é J=1, «v... , N-1. Finally calculate the new artificial
viscosity
n+l/2 _ n+l n n+l/2 _ ., n+l/2,2
Qpsp = @20 55+ 500 Ui U5 %
n+l n
when 5.9/ 7 Pyl

0 otherwise.

We take &= 2. The velocity must be specified at the two boundaries. We

use a piston at the lower boundary

Uln+1/2 - Asin ( wtn+l/2),

and a transmitting upper boundary

n+l/2 _ , n=l/2 n-1/2 _ .n-1/2 n n n n
Uy = Uy + (U Uy ) Syo1/2 At” / (Ry = RN-l)

At B T b S

r
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where S =V YB/P is the sound speed.
The thermodynamics is determined by the equations of energy conservation,

radiative transfer, and LTE ionization. 1

Energy conservation:

JE 2Ly . —aF
| R R Iy, QR

where E = 3/2 nkT/ p + x X H/E is the thermal plus ionization energy per

unit mass, and n is the total particle density, x is the fractional ionization,
X 1is the ionization potential and m is the mean mass per particle. The
conductive flux is F = 7.6 x 1077 /2 %%

Transfer equation:

23 1 3d
" om [m_,Tm = (JB)
where X is the absorption opacity and o is the scattering opacity, and
w2 = 1/3.
Saha equation:
x(x+fA) _ _K =.3/2 -1 ~ /kT
= = ¢ (T) = X mT o e x

where K = 0.333368 for hydrogen and fA is the fraction of electrons from heavier
elements (assumed fixed).

These equations are solved in finite difference form on the same grid
as the dynamics, implicitly and simultaneously be Newton-Raphson itleration

(complete linearization). The finite difference equations are:

Energy:
n+l n n+l n+l/2 1 1 ’
Eiv1z2 " Bjaase * [Pj+l/2 + Qj+1/2_] —%a -~
B jelse P j+ls2
g el nel/2 o,

jel/2
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where the heat input is Hj+1/2 = un)( je1/2 (Jj+l/2'Bj+l/2) - Jj+l j
and the conductive flux is

Pisrze Y P12

F.=~2C.l/2 (x. + Xy n) T
J J+ls2 j-1/2 Amj+l/2 + Amj_l/2
Jastre * li1ze 52 7 )
2 je1/2 " Yie1/27¢

The boundary conditions on the flux are that C = 0 telow the temperature minimum
and FN—l = 0 or TN-3/2 = TN—1/2 at the upper boundary.
The number density of particles is

n n

H {1+x+B+A(1+f)}

o {1+x+B+A(1+F)} /mH (1+4B+w)

= 0 {l+x+B+A(1+f)} /m
where B is the ratio of helium to hydrogen by number, A is the ratio of heavier
elements to hydrogen by number, w is the mean atomic weight of the heavy elements
times A, and f is the fraction of electrons from heavy elements. The total
internal energy per unit mass is

E=E + Eio

th n

Eth = 3/2 %—T {1+x+B+A(1+F)}
.k : X - > ©
Eion * @ Tion ¥ Tion = Tk © 1.58 x 107 K
Transfer:
fj+3/2 - Jj+1/2 - Jj+l/2 - Jj—l/2 _ ATie1/2 (J - B ) = 0
AT L, it 2 j#l/2 - Tjel/2" T
where

A = X, Am,
Ye1/2 Kz 25,170

by = 172 C ATg,p ¢ AT5170)
M = 1/3
X = R(po,T) from table
B=2 1

m

H
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The upper boundary condition on the radiation field is no incident radiation,

so
J -J
N-1/2 N-3/2 A
T =12 Un iy * nezra) * Byaize YTnerse:
The lower boundary condition is
J3/2 = B3sp
that is an adiabatic first layer.
Saha:
Xn+l - 26/ {¢ +af+ (q¢+Af)2 + 40} =0
j+l/2

where ¢ = K (k/m) p—l 73/2 exp( x /kT)
and K = 0.333368, X/k = 1.58 x 10° °K.

These three equations are solved by linearizing them in the corrections

6T, 38J, and ©&x, and solving the resulting block tri-diagonal system for

these corrections.

After the new temperature distribution is obtained, the Saha and transfer
equations are solved for the ionization x and mean intensity J consistent
with that temperature distribution. The formal solution of the transfer equation
involves sums of large terms ( At )'l and small terms ( At ) at small optical
depth and in the usual tri~-diagonal Gaussian elimination scheme all significance
would be lost. Therefore to be able to carry the calculations out to optical
depths as small as the smallest machine floating point number the elimination
scheme was modified as follows: The transfer equation has the form

Ai J

+ Bi Ji + C. J, =D

i-1 i 7i+l i.

The usual procedure is to calculate elimination matrices

~1 -1
Ci and Fi+l = -(Bi + A, E. (D, + A, F,

E =(B; +4; E i 1-1) i i 1~1)’
where these are then used to back substitute for the

i+l i i i-l)

Ji = Ei Ji+l + Fi'

D e ettt e T T
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At small optical depth the radiation field is nearly constant and Ei nearly
the identity matrix 1. It is therefore possible to gain accuracy by working
with a matrix Ci equal to the difference between Ei and 1.

That is, let

Ji=(1-€3) dj+Fy

The relations to calculate ei and Fi are found by substituting this equation

into the difference equation. The result is

1 (
€ - - € - €
N T 0 Rl G A A 1-1)

-1
= - €
R i-) (Di * Ay Fi-—l\

The large terms in the sum Bi + Ai + Ci are cancelled analytically.
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III. WAVES IN THE CHROMOSPHERE AND TRANSITION REGION

Acoustic pulses are seen in the transition region (AFGL-TR-77-01G8),
but observations of line widths seem to rule out sufficient acoustie fiux
to heat the upper chromosphere and corona (Athay and White, 1978; Brunner
and McWhirter, 1979). Dr. Jorge Vernazza and I have studied the propagation
of acoustic waves through the solar atmosphere, and we find that indeed, acoustic
waves with velocity amplitudes consistent with the observed wave velocity
of ~ 1 km/s at the Lemperature minimum can not carry sufficient energy to l
the transition region and the corona to heat them. i
We have used a one-dimensional Lagrangian fluid dynamic code, including
both electron conduction and optically thin radiative losses (a la Cox and
Tucker, 1969) in the energy equation. The waves were driven by a sinusoidal

piston in the convection zone, 1.5Mm below T = 1, and propagated through

5000

an empirical solar atmospheric model (Vernazza, Averett, Loeser, 1973).

The most surprising result we found was a resonance at 195s period, where

the velocity amplitude of the waves at the temperature minimum for a constant

driving piston amplitude became very large (Figure 1). This resonance occurs
near the acoustic cutoff frequency appropriate to the temperature minimum, f
but actually seems to have a more global structure and may be the chromospheric

mode found by Ando and Osaki (1975). This "200s", "chromospheric" mode extends

higher up into the atmosphere than longer period modes and is responsible

for the change over in the dominant oscillation frequency from about 300s

to about 200s as one goes up in the chromosphere (Figure 2). Both the driving :

frequency mode and the "200s" mode are excited, but the amplitude of the long
period oscillation decreases rapidly with height above T = 1, while the amplitude

of the "200s" mode is nearly constant with height until the top of the chromosphere,

Oscillations with periods greater than 200s excite this "chromospheric" mode,
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so in the upper chromosphere only this "200s" mode is observed. Oscillations
with periods shorter than 200s do not excite the "chromospheric" mode and
have large amplitude in the upper chromosphere.

The implications for coronal heating of our results, are that acoustic

i waves of all periods, 508 < P <300s with velocity amplitude < 1 km/s at
the temperature minimum carry < 2xlOu ergs/cmzs into the transition region.
This is an order of magnitude less than the required energy input into the
corona (Figure 3). Even increasing the driving amplitude does not significantly
increase the acoustic flux in the transition r2gion. KRather larger driving
amplitudes lead to greater wave dissipation in the upper chromosphere (Figure
4.

Hence, on both observational and theoretical grounds zcoustic waves are
ruled out as the energy supply for the corona. The heating of the upper
chromosphere is still an open question. Magnetic fields clear.y play a role
in the structure of the upper chromcsphere. But, the nature of that rcle
is as yet unclear. Magnetic fields may alter the wave generation, tney certvairl~w
change the types of waves that can propagate and their propagation ard ~ >~ nz-lon
properties, finally the field channels heat conducted back dowrn from 'he corona
to about 20,000K. On the observational side, the large Ca II and Mg II emission
is confined to the regions of strong magnetic field in the network. However,

Ca II H and K bright points on the blue side of the line are fairly uniformly
distributed over the solar disk throughout the interiors of cells, and are
likely due to upward propagating acoustic waves. As one step in exploring

the effects of magnetic fields we have calculated the shapes of wave-vector

- surfaces for magneto-acoustic-gravity waves.




IV. MAGNETO-ACOUSTIC-GRAVITY WAVES

The solar corona and chromosphere require some non-thermal energy input
to heat them. This energy must be transported by motions: either wave or
quasi-static. These motions are produced either directly by the turbulent
convective velocity field or by some type of thermal overstability. Typical
times scales are comparable to or longer than the natural buoyancy time scale,
so that gravity significantly influences the motions. Because the atmosphere
is compressible, gas pressure influences the motions as well. We also know
that the structure of the corona is controlled by the magnetic field, which
must therefore play a crucial role in the process of energy transfer and
dissipation. Dissipation likely takes the form of current dissipation
in the ionized corona, but the energy that drives these currents must be
transferred from the convective zone to the upper atmosphere by wave and
quasi-static motions. (Except for currents carried up into the corona by
emerging flux, which is a transient phenomena.) Hence the energy transport

process will be significantly influenced by three forces: pressure, gravity

and magnetic. Nelson Hartunian and I explored some of the propagation properties

waves under the influence of these three restoring forces: magneto-acoustic-

gravity (M.A.G.) waves. We know that acoustic waves are incapable of supplying

sufficient energy to heat the corona. Can the broader class of MAG waves supply all

the non-radiative energy input needed to heat the corona?

Before venturing into calculations with the full MAG wave equations,
an understanding of the wave properties in the WKB limit is a helpful guide.

We have restricted our attention to the case of constant sound speed s and

Alfven speed a. This is unrealistic. While an atmosphere can

PP

.




have constant magnetic field §0 and temperature T, an atmosphere in hydrostatic

equilibrium must have density p decreasing outward, so the Alfven speed

1
a= Bo/ (410) % will increase outward. By neglecting the variation of Alfven
speed, we restrict ourselves to the local dispersion relation (McLellan and

Winterberg, 1968). This is valid only for wavelengths small compared to the

|
I
density scale height. On the Sun we are interested in waves with wavelengths '
comparable to the scale height, so we must integrate the full wave equation. l
However, the local dispersion relation is already complicated, and a picture %
of its properties will be a useful guide in the full calculations. The
variation in Alfven speed with height was considered by Yeh (1974), but he
only examined the special cases of horizontal and vertical magnetic field.
The local dispersion relation has been studied for special cases by several
authors. Bel and Mein (1971) and Bel and Leroy (1977) have discussed the case
of vertical propagation and derived the variation of the acoustic cutoff
frequency with magnetic field strength and direction. The special cases of
propagation either in or perpendicular to the g-go plane and vertical or
horizontal §o have been discussed by Chen and Lykoudis (1972, Michalitsanos
(1973) and Nakagawa, Priest and Wellck (1973). We consider the general
case and study the wave vector surfaces of the local dispersion relation
for magneto-acoustic~gravity (MAG) waves to gain insight into the
behavior of these waves. The wave vector surface is the
three dimensional locus of the real part of the wave vector for all waves
at a given frequency. The wavelength is given by |Re k | = 2n/\, so, for
example, small wave vectors correspond to large wavelengths, and since the
phase speed is ¢ = w/| Re k | , waves with small wave vectors propagate
rapidly. Each type of restoring force tends to give the wave vector surface

a distinctive shape as we discuss below. We illustrate and disrcuss the
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wave vector surfaces of MAG waves in general cases in the next section.
Analytic results for limiting cases of (i) high frequency, (ii) vertical
propagation, (iii1) large horizontal wave vector kg , and (iv) horizontal
magnetic field are derived in an appendix. The principle results are:

(1) At high frequencies, where buoyancy is negligible, MAG waves behave
like magnetohydrodynamic (MHD) waves. (2) At low frequencies in a

weak magnetic field there are both a gravity fast mode and a magnetic slow
mode, but these exist only for small wave vectors. At large |ki both
their wave vector surfaces degenerate into planes through the origin

in E—space perpendicular to the magnetic field. (3) At low frequencies

in a strong magnetic field there is a magnetic pressure tast mode with
spheroidal wave vector surface about the origin in k-space. The gravity
mode is suppressed except for directions nearlv perpendicular to the

90 -8 plane or for nearly vertical magnetic field. Away from the origin
both modes' wave vector surfaces become planes through the origin 1in k-space
perpendicular to the magnetic field. (4) There is a critical frequency
separating high from low frequency behavior, which results from the density
stratification of the atmosphere. The horizontal component of the magnetic
field increases the density scale height and thus reduces the critical

frequency.




A. WAVE VECTOR SURFACES

The local dispersion relation for magneto-acoustic-gravity (MAG)

wave i 2

mz - _(lf__._i. w4 - wz (SZ + az kZ)_ i k

QHQO ~ Y- X (1)
2
, (k. B) . (k . B) (g . B)
2 2 2 2o 2.2 . 2V 2 & -« P
—_———— + -1 » Tk ~ivk ) -
+s" k i (y-1) g ky —ivk 4mo 0

(McLellan and Winterberg, 1968). Here §o is the unperturbed magnetic
field, Py is the ambient density, k; is the horizontal component of the
wave vector E, s = (*{po/po)l/2 is the sound speed, a = ?O/(Anp())lﬁ is the
Alfven speed, and Y 1is the ratio of specific heats. We solve this for

k (w, g5 go). The first factor 1is quadratic in k and represents the usual

Alfven waves, which we discuss no further. The second factor is quartic
in k and represents the MAG waves. In the limit of zero magnetic field it

reduces to the dispersion relation for acoustic-gravity waves. In the limit

of zero gravity it reduces to the dispersion relation for magneto-hydrodynamic

(MHD) waves, and in the limit of zero compressibility (Y, s, H = po/oog >00)

it reduces to the dispersion relation for magneto~gravity waves.

The wave vector surface is the three~dimensional surface of those
values of the real part of the wave vector, Re B (w, g» ?o), that satisfy the
dispersion relation for a given frequency w. Energy propagates perpendicular
to this surface, We will study three-dimensional pictures of the wave
vector surface and two-dimensional slices through the surface to help
clarify its shape. One can recognize the type of wave mode from the shape
of its wave vector surface. Where pressure is the dominant restoring force

(acoustic or magnetic pressure modes), there is no preferred direction and

the wave vector surface is a spheroid about the origin in k-space.

e - e
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Where buoyancy is the dominant restoring force the vertical (-g) is the
preferred direction. Gravity produces a characteristic accele;ation for

each direction of fluid displacement. Each direction of motion therefore
corresponds to a particular frequency. Because the fluid is not compressed
the motion is transverse, B. u = 0. Since at any given frequency motion is
possible only at a single angle to the vertical, the wave vector must make
the complementary angle to the vertical and the wave vector surface is a cone

of revolution about the vertical axis. Where magnetic tension 15 the dominant

restoring force the magnetic field §0, is the preferred direction. Magnetic
field lines act like rubber bands under tension. Waves are transverse and
propagate along the field lines with a characteristic speed equal to the
square root of the tension divided by the density. The wave vector surfaces

are planes perpendicular to 50-

The character of the MAG waves depends on their frequency and the
magnetic field strength. Frequency is scaled by Nac = vg/2s, the acoustic
cutoff frequency in the absence of a magnetic field. For high frequencies,
uu/Nac >>1, gravity is unimportant because the fluid acceleration is much

larger than g, so the waves behave as fast and slow mode MHD waves (see appendix

eqns A4, A5), Acoustic waves cannot propagate at frequencies below the acoustic
cutoff frequency. For low frequency waves, w/Nac'<l, gravity is significant.
Magnetic éield strength is paraqgtrized by the ratio of Alfven to sound speeds,
a/s = (B0 /4nypo) = (Pmag/Pgas) . For weak fields we expect to find an
acoustic-gravity mode plus a slow magnetic mode. For a strong field, we
expect to find MHD waves in the high frequency limit and a new situation

where all three restoring forces are important in the low frequency limit.

We now consider these cases, starting with the simplest situation - high

frequencies, where gravity is unimportant. Detailed analytic results are

derived, where possible, in the appendix.

1. High Frequency
High frequency means frequency above the acoustic cutoff frequency, where

gravity is negligible. In the absence of a magnetic field the acoustic cutoff is

Nac = vyg/2s = s/2H, (2)

where H = PO/pog is the pressure and density scale height. A magnetic field
reduces the acoustic cutoff frequency because it increases the scale height.
(A cutoff marks a transition between waves that propagate vertically and those

that don't, but instead vary exponentially with height.)
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Three dimensional pictures ol the wave vector surfaces for frequencies
above the acoustic cutoff frequency are shown in figures 5 and 6 for the
cases of strong and weak magnetic fields respectively. Cuts through the wave
vector surfaces at 45° to the BO -¢ plane arc shown in tigures 7 and 8. In
both cases, as expected, the surfaces look like the usual MHD surfaces
because tor w 'Nac the effect of gravity is neglipible. The spheroidal
wave vector surface near the origin is the fast mode and the planar wave
vector surtfaces on either side of it are the slow mode. 1In a weak
magnetic field: the fast mode is an acoustic mode and has a cutoff
frequency, below which it ceases to propagate. The slow mode is a magnetic
tension mede and propagates for all frequencies, so it has no cutoff
frequency. 1In a strong magnetic rield: the fast mode is a magnetic
pressure mode and propagates tor all frequencies, so it has no cutoff
frequency. The slow mode is a one-dimensional acoustic wave propagating
along the magnetic flux tubes and has a cutoff frequency, below which it
ceases to propagate.

The acoustic cutoff frequency can be found by considering the special
case of vertical propagation (see Appendix and Bel and Mein, 1971; Bell and
Lerov, 1977). in the weak rield 1imit, the fast mode has the cutoff

frequency (eqn. Al2)

E 1,
‘ = N . s/(s2 + azsinze)z, s>>a. (3a)

)
ac ac
Below this critical frequency the fast mode becomes an internal gravity mode.

In the strong field limit, for a non-horizontal magnetic field, the slow
mode has the cutoff frequency (eqn. A20)

w =N cosH, a>>s, B<mw/2. (3h)
ac ac

Here 6 is the polar angle of the magnetic field BO. Below this critical

frequency the slow mode Joes not propagate except in a few special directions.

:
3
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The minimum value of the acoustic mode cutoff frequency for any magnetic
field strength occurs for a horizontal magnetic field and is (A22, A43) L

- 2 2.3
w .= NaC s/(s” + a")"”. (3¢c)

These result on the cutoff frequency must be treated with caution, because

the WKB approximation is invalid near the cutoff.

The acoustic mode has Im kz= -i/2H (fig 8b, and eqns. Al2, Al9, A38), as
we would expect {rom our experience with acoustic-gravity waves. The
nagnetic mode has Im kz =0 (fig 8b, and eqns. Al4, Al6). These are general
properties, that are approximately true for all magnetic field strengths.
They are a consequence of energy conservation. The wave energy flux,

f puzs (acoustic)

F=p v o (4)
group I‘puza (magnetic),
must be constant with height. For acoustic waves in an isothermal
atmosphere, where s = constant,
-1 -
u «p 3 « e Z/ZH. (5)
The WKB expression for the velocity amplitude is
-1 i
we | k72 etKpE, (6)
and
| k | = w/s = constant, N
so
Im k= - 1/24 (acoustic). (8)
For magnetic waves,
-1 - 2
acp ? «e 2/ H, (9
so
-1/4
«p “HE (10)
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Lt

——rares

:
but ;
b
y
i ki1 = wa +p T, (11)
Hence the height variation of the velocity amplitude of magnetic waves is 2
g
due to the variation or ' k “ and not the exponential iactor, so
Imk = 0 (magnetic). (12)
2
Dirferent modes will counle with each other when thoir frequenvies a:.d
wauvelengths are the same. For large ; k  therce is at most cne uvpward and
owtiwerd repavating wave, so no ooopling can ocur, but for saul!
coup’ ine is somerimes possible.  The magnetic and acoustic wodes viil have
interserting wave veolor surtaces when a> . {(onsider the limitins o.sc
ol vertically propagating waves. e couplin: condition caun be tound by
equatins the cxpressions tor the .wai parts -0 the fast ard ~low wave vec: ar
feqns. Alo and AlY), and solvinp 'or w. Resonant coupling occurs, when
a>2s5, (or
. S 2., 7 s
w/Aic = cosf (1 + s cos 6/a"y ",
(13)
; cosb S
Re k= —— = 3
z 2H a

that is tor w slightiy above the cutoff frequency and wavelength larger
than the scale height. Bel and Leroy (1977 have obtained corresponding

results for a vertical field of arbitrary strength.
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2. Low Frequency

We now turn our attention to the more interesting but complicated case

of low frequencies where all three forces are significant.

(a) Weak Magnetic Field

In a weak magnetic field one mode must be a gravity wave and the other
a slow mode magnetic tension wave, in order to go continuously to the limit of
acoustic-gravity waves in the absence of a magnetic field and MHD waves
in the absence of gravity. This is indeed the case, as shown in the three-
dimensional wave vector surface pictures (fig. §) and slices through the
wave vector surface in figure 10. There are some modifications, however. First,
the gravity mode hyperbola is cut off near the Alfven planes. This
is similar to the wave vector surfaces of magneto-gravity waves (Lighthill,
1967; Schwartz and Stein, 1975). Second, the slow mode wave vector surface
has a bulge away from the origin in the vertical direction, rather than a
dimple toward the origin in the magnetic field direction as found in MHD waves.
Third, at large horizontal wave vector, k >>w/min (s, a), both modes wave
vector surfaces become planes perpendicular to the magnetic field direction
whose extensions pass through the origin. This can be seen most easily from
the analytic results derived in the appendix (eqn. A40) and from slices through
the wave vector surface when the magnetic field is nearly vertical (fig. 11).
When a wave vector surface becomes a plane through the origin perpendicular
to the magnetic field, its group velocity goes to infinity, since k is
independent of w, and its potential energy becomes much larger than its

kinetic energy. This occurs below the critical frequency

w, = Ncos8 (14)

O et wrme . 3 e R AT T \TIPREE THEER
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7 e O T A ST

(A36, where N = (Y-l)%g/s is the Brunt Vaisala frequency) for both the fast
gravity and slow magnetic modes at sufficiently large

| E | . The propagation direction perpendicular to the ?o -8 plane is a
special case. In this direction the plane through the origin in 5 -~ space
perpendicular to the magnetic field has zero vertical component. Hence in
this direction at large k; the wave vector surfaces arch over until

Re kz = 0 (fig 12). In this special case there is a sharp cutoff to
propagation. However, in general whenever the wave vector surface approaches

a plane through the origin perpendicular to the magnetic field (Re § » o in

A3l) the waves become non-propagating.

© r e
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(b)Strong Magnetic Field
As the magnetic tield strength increases, the distance of the Altven
planes trom the origin, w/a, decreases. Any gravity mode wave vector
surface is restricted to lie between these planes, on which magnetic teasion
provides all the needed acceleration. Hence the gravity mode wave vector
surface gets squashed (figs 12-15), Instead of a hyvperboloid, the wave
vector surface degencrates into two intersecting plances throush the oricis -

one perpendicular to the magnetic field and the other with k= 0. The
z

critical frequency tor both zero and large k, is the =same in the stron.

tield Timiv fogqns. AZO and A3H)

Hence a gravitv wave slow mode cannot propagate in & strony magnetic Field,
except for a small range of intermediate k; and dire-tions nearly
verpendicular the ?O -8 plane (fig 16) or nearly vertical magnetic 1icld
(Fig 17;. These last two figures also clearly illusirate the degeneration
~¢ the wave vector surfaces at large k; into planes throush the origin
perpendicular to the magnetic field. Again Re kz = 0 on this planc in the
special direction perpendicular to the @0 - g plane.

The wave vector surface of the second mode - the magnetic pressure
fast mode - remains a spheroid about the origin at low trequency (iius 13-15)
as at high frequencyv (fig 5). However, at low frequency this spheroid
attaches onto a plane through the origin perpendicular te the magnetic
field at large k,, rather than terminating as at high frequencies. These

waves with large kL have virtually all their c¢nergv in the form of magnetic

potential energy.

S ey > 3T S




Conclusion

The significance of these results for solar heating are: First,

all low frequency waves (w < Ncos®) in a strong magnetic field propagate

energy in the direction of the magnetic field. Thus refraction will not

‘ reduce the energy flux of low frequency waves. Second, the group velocity
of such waves may be greater than the Alfven speed. And third, the
magnetic energy density will be greater than the kinetic energy density.
Because of these last two results, the total wave flux will not be

observable in line widths or Doppler shifts. Hence current observations

do not place any restrictions on the flux of low frequency M.A.G. waves.




Appendix: Limiting Cases

The local dispersion relation for magneto-acoustic-gravity waves
(neglecting gradients in the sound and Alfven speeds) is(McLellan and

Winterberg, 1968)

Wt oWt (52 + a’) 52 - iyg - k J

- 2

(k . B)
2 9 K . BJ )
+ sk T +  (y l)g ko (A1)
(o]

- vkl (‘5-130)(%-[30):0

1YK 47{90 ’

where B is the ambient magnetic field, p is the ambient densityv, k; is thec
horizonfal component of the wave vector k, and Yy is the ratio of specific
heats. This dispersion relation is a fourth order equation for the complex
vertical component k_ of the wave vector in terms of the frequencvy and
horizontal compunentsz, which are real:

4 3 2

D = ak + bk + ck + dk + e =0 (A2)
z z z z
where
a = 52 az coszo
2 2 o . 2 2.
b = 25" a k,cosfsing cos ¢ + iyga” cos’ i
c = - uz (82 + a2) + sza2 k_L2 (coszﬁ + sinzﬂcoszp)

. 2
+ iyg a kjcosYsindcos¢

2 3 .
d = 252a k,  cosfsinfcosyp

. 2 . 2 2 2
- iygw + iyg a k,; cos

4 2 2

e=w - w (57 + az) kJ_2 + s2

azk_‘_4 sin29c052¢

+ (y - 1) g2k¢2 + iygaZkLB costsin cos ¢ (A3)

® is the polar angle between the magnetic field and the vertical and ¢ is the
azimuthal angle between the horizontal projections of the magnetic field and
the wave vector-vertical plane.
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High Frequency

For high frequencies, w>>g/s, gravity is negligible and the M.A.G. waves
become the well known MHD waves. The dispersion relation reduces to

2
, (k.B )~
/ 2 by
T O ML (A4)
~ ~ 4p
0
or
4 2 2 2 22 2
- ¢ (s  +a) + s a cos OkB =0

where ¢ =w/k is the wave's phase velocity and ¢ is the angle between k

and B . The wave modes ir. this case are the usual fast and slow modes.
Theirophase velocity is
2 2 .
2 s +a 1 2 2.2
et T t-zlu +a)’-
T . L
22 2 “
- 8 A5
4 s7a” cos kBJ (A5)

I[n the limits ar>s or s>>a, the phase velocities are

Y 9 2 ]

. T = ¢ "4 ¢ gin” U

fast > kB
2 2
= c cos 0 (A
slow < ) kB
10
where ¢, = max (s, a) and c, = min (s , a) (see for instance Bazer and

Fleischman, 1959.) In the weak field limit the fast mode is an acoustic
mode and the slow mode a magnetic tension mode, while in the strong field
limit the fast mode is a magnetic pressure mode and the slow mode a one
dimensional acoustic mode propagating along the magnetic flux tubes.

(ii) Vertical Propagation

For vertical propagation, k;.= 0, the dispersion relation reduces to
(Bell and Mein, 1971)

(A7)
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where H = P/pg = SZ/Yg is the pressure scale height in an isothermal atmosphere.

This is similar to the MHD dispersion relation, with sz+ 32 (1 + i/kH). The

phase velocities are now a function of k

2 al + s2(1 + i/kn)
c+ =
T 2
2\ 2 2
2 2,2 s s 2 2
1 -t T =
+ %5 [(a +s7) (kH) + 21 i (s" +a")
. ]
-4 1+ §ﬁ9 szazcoszé] (A8)

In the weak and strong field limits this becomes

2
2 ) _ 2 i 2 .2
Cfast = (k)+ = s (1 + i ) + a"sin"© s>>a (A9)
= a2 + 52 (1 + %ﬁ) sin26 a>>s

azsz(l + i/kH)cosza

2 _ (9) 2
Cslow k /-
2 2 ,
a” +s” (1 + i/kH) (A10)

2
a cosze s>>3

s2 (1 + %ﬁ) cosze a>>s

These can be solved for the wave vector k. Consider four cases separately.

(a) Fast mode with s>>a:

K2 (s + a%sin%e) + i(k/H) 82 - w2 =0 , (A11)
SO
ko= - i *
+ 2H s + a sin" 8 X
W Nac2 s2 : (Al12)

where N = vyg/2s = s/2H.
ac




There is a cutof! tfrequency, below which the wave is e¢vanescent,

)
= N‘L s/ s + a sin 9] . (A173)

This mode is a cross between the acoustic branch of acoustic-gravity waves
and tho fast mode MHD wave. The stratification produces the cutoff
frequesncy and a vertical amplitude growth (imaginary part of the wave
vectors. The magretic field reduces the cutoff frequency below N

and reduces the vertical growth rate below !/2H, their values for S acoustic-

pravity waves.

ihy  Slow mode with s-»a

) w
h_ = A e (Al

a cosy

Fhis is the usual magnetic tension slow mode. Gravity does not alter the

[IRSISECTN

Lo rast mode with a>-s

S
in the case where kH>>s7/a

2,2 2 2 . 2 2 2
k(a” + 57 =in"¢) + 1i(k/H) s sin"9 - uw” = 0O (o
SU
> 2
- . L s _sinv
47 2H 2
a
a L
Na 2 SZ AH -
. in ¢
+ ] - ; fﬁg;sl J
=z 2 y
w a (AT

This is a magnetic pressure mode slightly modified by gravity. There is
a small vertical growth in amplitude and a slight dependence of the phase
velocity on the direction of the magnetic field. Ther2 is no cugofy
frequency contrary to appearances, because as w -+ N =1, kH ~ s7/a” and
our initial assumption is no longer valid. The cas
investigated separatel-.

aC\45 gmall kH must be
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2
The special case kH < s /a2 corresponds to small frequencies, w/N < s/a.

In this case the vertical dispersion relation reduces to ac
w 3 _— w §3_ + szazcosze =0,
k k kH wH
which can be written as a cubic equation for the wave vector
2 4
ok 2 g e H (A17)
2 2 22 2
a cos 6 a s cos 0

In the limit of small w, the first and second terms dominate, and

If we include the first order correction, we find that the fast mode at very
low frequency in the strong field case is

. 2
k = w i /S v
+ t acos® + 8H Nac (A18)

The third root of the cubic is pure imaginary. This is a magnetic tension
mode and has no cutoff frequency.

(d) Slow mode with a>>s:

k252c0528 + i (k/H) 52c0326 - w2 =0

S0 1
2 "2
K _ _ i n w 1 - Nac c0528 (A19)
- 2H - scosh u)2 .

This is an acoustic mode. 1Its phase velocity in the direction of B is the
sound speed. It grows in the vertical direction with the usual scale height of
2H. 1t has a cutoff frequency

= 0,
Nac cos (A20)

w .
crit
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The case of a horizontal field must be treated separately. For 8 = 90° one mode
has zero phase velocity and the dispersion relation for the other mode
becomes

wz - (a2 + 52) kz - — s =0

N
‘e

so . 2 N 2

5 W
2H a + 52 daZ + SZ wz a2 + 82 : (A21)

® s N
crit ac 3
a + s (A22)

and the vertical growth rate is reduced.

(iii) TLarge k;

In the limit of large k,, that is k,>> w/min(a,s) the dominant
terms in the dispersion relation are the terms of order k :

kZA azszcosze + Zkz3 kLazszcosesinecos¢

+ kz2 kL? azs2 (c0526 + sin29c052¢)

+ 2k kL3 3252 cosfsinbeosé
z

i
= (kz2 + kl?) (kzcose + kj_sinecoscp)2 azs2
2
2 .2 k. l}o)
-
%o
= 0. (A23)




Hence either

or
2 . 2 2
If = 0, lL.e. kZ = kJ- .

3 . .
The next lower terms are the terms of order k', and the dispersion
relation is

PR AP RS AXCRY
~ 4o T AT Lap 2

(o} O 5

k B

_ 2 0 o 2
= k e [g. B IY?'BO/S ]

o)
_ 2 2 o
= (k + k) (kzcose + k;sinticost)

T 0
[kz cos® + k sinfcost + icos@/HJ a”

(1) k.B =0

~o
or kZ = - kltanecos¢
2
(2) k. §0 = iyg . go/s
or
kz = - k,tanfcos¢ - i/H
2
(3 and 4) k¥ =0
or

k, = + ik

(A25)

(N26)

(A27)

(A28)

(A29)




The first two modes have wave vector surfaces that are planes perpandicular
to go’ while the last two are non—propagatingzmodes. For the first two
modes we can include the next lower order, g , terms In the dispersion
relation as a perturbation. The dispersion relation now becomes

L [
wnere N = (v - 1)2 g/s is the Brunt-Vaisala the frequency of
oscillation of a fluid parcel in an isothermal atmosphere.
In component form

(kz2 + ki?) (kz cosH + ki_sinecos¢)

x [}zcose + k,;sinbcos¢ + icose/é]

52 + a2 2 NZ 2

22
s a a

2 2
-k, + k) (A30)

Let us define ¢ by

= - tan6 + §.
z k; tan cos¢

kz cosb + kLsinecos¢ = §cosf (A32)

kz2 + klg = kl? (tanzecos%t + 1) - 28k tanbcosé.

The dispersion relation becomes (note &~ H‘l)

8 cosze (6 + i/H) - wz (a2 + sz) /azs2

+ (N2/a2) / (tan26c052¢ + 1) = 0.



1 - sinzesin2¢

There exists a critical frequency

2
+ N
a

1
1+ tan26c052¢

cosze

_ﬁHz

coszo .

The wave vector has a real part, 6cosf, parallel to the magnetic field for
w>w . However, for w <w , Red = 0 so the real part of the wave vector is
pergendicular to the magn%tic field through the origin.

2
w_ = NaC cosze, (a>>s, independent of ¢°. (A35)

Note this is the same as the cutoff frequency (A20) of the slow acoustic
mode in the cpposite limit, k;~0.

For a weak field,

wcz = Nz/ (1 + tan% cosz¢b

> Nzcos_e. (A36)

In this case § has a real part for all ¢ if w>N, but only for ¢ inside
a fan

cosz¢>> ( - l) /tan20

if N>w>Ncos9.
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Above the critical frequency
(for high frequencies or nearly horizontal §o,cosezo)

. 2 2
. i w s + a 1
§ = - — +
2 T Cose \[ 22 (A38)
s a
1 w
s>>a
N acost
- e 4
2H - w
scosé a>>s

These are the usual MHD slow modes, but with the usual acoustic-gravity
exponential growth factor.

Below the critical frequency (w<<wc), with a»>s

~-i/H
5 = 2
+i/H 5 L;l SRS S (A39)
as N 1 - sin ésin"¢

Hence the wave-vector surfaces are planes through the origin and
perpendicular to BO

Below the critical frequency (w<< mc) with s>>a

N L - (440)
(1 - sin“6sin“¢)*

; where

o |
e
1
p—

o]
ol
ol

Again the wave-vector surfaces are planes through the origin perpendicular

to B .
~0




(iv) Horizontal Magnetic Field

When the magnetic field is horizontal, the dispersion relation reduces
to a quadratic in kz (since cos8 = 0)

wA - wz [(32 + a2) 32— iyg.g]

+ (N2 + azgz) szk_L2

= [j- uz (s2 + a2) + sZaZkL? coszé] k 2
z
. 2
- iyg w kz
+[w4 R G o VLI stzk_Lz]
=0 (A41)

For small kjand for all k at high frequencies thiszreguceszto the usual
acoustic - gravity dispersion relation, but with s »s + a™:

wz (52 + a2) k 2 + iyng k
z z
- [éa - wz (32 + az)k‘L2 + stszz] = 0

The vertical component of the wave vector is

2 2 2 \?
P s w _ 1 s
z 2H sz+a2> - s +a 4H2 s2+a
's

2 2

N S 2

+ 5 -1) kg
w s +a

(#2)
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There are acoustic or magnetic pressure waves in the high frequency limit
and a modified gravity wave in the low frequency limit.
frequencies are

1 :

Nac 52 ’ (A43) i3

o= A :
w N N2 2 :
s“+a ]

so both are reduced by the magnetic field.

The critical

e e ot memt ™ v

For larger k¢ and low frequencies the dispersion reduces to

2 9 2 9 2 9
- w2 (s™ + az) 52 + k° s2a2 k,© + N sk,

= 0.

This is the same as the magneto-gravity dispersion relation
(for horizontal Bo)

2 2 : 2.2
- wz k™ + k azkiz + Nk, = 0,
but with

pi
wZ > W s+ a2
2

s
Compare fig. 14 with Schwartz and Stein (1975) fig 3b.

The vertical component of the wave-vector is

5 2
N —38
2 S"+a2 2
k © = -1 1k (A44)
z 2 2 4
w2 K 2 s a
- k" =
_ 52+a2
2 s +az
Hence kz + o for k; = w —§*§~—' and is real for smaller k and w below the

R

critical frequency. s a
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V. "MODAL" CODE

T 7 e A U G T

We wish to study the generation, propagation, and dissipation of magneto-
dcoustic-gravity waves in order to determine their role in chromospheric and
coronal heating, as well as to determine any possible signatures of different
waves on line profiles. These waves are inherently three-dimensional and
three-dimensional nonlinear MHD calculations require large amounts of computer
time. We are therefore developing a method of reducing the three-dimensional
calculations to one dimension. The essence of this "modal" method is to
assume that the mean state of the atmosphere is horizontally uniform then separate
all the fluid variables into mean and fluctuating parts, and expand the fluctuating
parts in a complete set of horizontal planforms. The crucial approximation
is to truncate this expansion at only a single hexagonal horizontal planform,
which then leaves us with a system on one-dimensional Eulerian partial-differential
equations for the mean variables and the amplitude of the fluctuating variables.
For example, scaler variables are expanded like the density

o(r,t) = 5 (z,t) + R (z,t) £ (x,y)
where P is the mean and Rf the fluctuating part of the density and f is the

hexagonal planform

f(X)y)

n

|~
M -

m»—-

R

[

dx

2T 27T 2T

4y 2T
y? =2 (0350 2 (e 5390 2 Gy T390

I+

where S is the length of a side of the hexagon.
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|

Vector variables are expanded like the velocity in terms of scaler potentials,

a"l {fx(x,y) U (z,t) + fy(x,y) & (z,t)}

Vir,t) = W(zZ,t) of atd £, U (2,8) = £06y) & (2,0}

-

fix,y) Wiz,t)

These hexagonal horizontal plan forms are shown in Figure 19. We have imposed

this fixed horizontal structure on the fluid flow. These l-mode expansions
are substituted in the equations of motion, which are separated into horizontally

averaged and fluctuating parts. For example, the continuity equation becomes

1_ -2 _Cc _ 1
C"=a f‘[f‘xf‘x+fyf‘y =5 = /%

, The advantage of this method is that we have included the horizontal velocities

and a crude representation of the horizontal variation of the motion, while

retaining some of the non-linear -coupling because we use hexagonal planforms,

and still have only a one dimensional system of equations. The disadvantage

is that the horizontal strucutre is imposed and does not correspond to the

actual fluid flow. It can, however, be throught of as a standing wave pattern

produced by six waves propagating in an hexagonal "pattern”.
The modal equations are solved by dividing the atmosphere into a grid

of layers and transforming the partial differential equations to finite difference

equations on the spatial grid. We solve the finite difference equations using

a two step Lax-Wendroff method (Richtmyer and Morton, 1969) with "Flux Corrected
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Transport" to introduce additional dissipation to stabilize the scheme (Book,
Boris, Hain, 1975). We use the full one-dimensional non-linear Eulerian equations
to test the solution scheme. At the moment there is a problem with the FCT

scheme at the boundary in a stratified atmosphere. We have tested the modal
scheme for (a) one-dimensional piston driven shocks. These show the correct
steepening and shock formation, but a bad post shock profile with a kink in

the saw tooth profile. (b) We are now calculating waves in an isothermal

gas, so only the continuity and momentum equations need to be solved, in order

to try and isolate the problem.




R
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FIGURE CAPTIONS

Chromospheric Resonance: Velocity Amplitude at the temperature
minimum for a given driving piston amplitude, Vp = 3x 10_3 X sound
speed, as a function of driving piston period.

Modes: Kinetic energy density in the fundamental and harmonic
modes as a function of height.

Transition region flux as a function of driving piston period

for a given driving piston amplitude, Vp = 3 X 10-3 X sound speed.
Transition region flux as a function of driving piston amplitude
for driving piston periods of 150 and 300 seconds.

Wave vector surface at high frequency, { = A/ch = 1.1, in a strong

magnetic field, a/s = 3.16. The axes are kx’ ky' kz and full
scale along each axis is f0.75/H, where H is the pressure and
density scale height. The magnetic field lies in the plane ¢! the
paper at an angle 6 = 30° to the vertical in this and all
subsequent 3-dimensional pictures of the wave vector surface,
except figure 14. The spheroid in the center is the magnetic

pressure fast mode an the planes are the acoustic slow mode

propagating along the magnetic flux tubes.

Wave vector surface at high frequency, { = M/Nac = 1.1, in a weak
magnetic field, a/s = 0.707. Full scale along cach axis is
+ 1.5/H. The spheroid in the center is the acoustic fast mode and

the planes are the magnetic tension slow mode.
Slice through the wave vector surface at high frequency, f = w/ch

= 1.0, in a strong magnetic field. The axis are the real part

of the vertical, Re k7, and the horizontal, kH, components of

the wave vector <in units of the reciprocal of the scale height,

H—l. The magnetic field direction is 0 = ASO to the vertical

and ¢ = 45° to the plane of the paper.
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Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

(a) Slice through the wave vector suartace at high rreguency,

£ = m/ch = 1.0, in a weak magnetic field.

(b) Imaginary part of the vertical component of the wave vector,

/

Im k , along the same slice as Cig., 4. Units are Y
7

|

(@) Wave vector surtace ol the pravity tast mede at low frequenc

f = w/N . = 0.5, in a weak magnetic tield.
ac

(b) Wave vector surface of the magnetic tension slow mode.

cases full scale alonyg ecach axis is + 2/H.

(a) Slice through wave vector surface at low frequency, T

= (.5, in a weak magnetic field.

(b) Imaginary part of k7 along the same slice.

o and 9 give the direction of B .
O

Units are

(a) Slice through wave vector surface at low {requency, f

. . . e .
= (0.5, in a nearly vertical, 9 = > , magnetic

(b) Imaginary part of kv along the same slice.

lield.

Units

are

(a) Slice through wave vector surface at low frequency, f

= 0.5, in a weak magnetic field perpendicular to the BO— g

5 = 90",

(b) Imaginary part of k7 along the same slice. Units

are

H

In both

wiN
ac

plane,

H

(a) Wave vector surface of "slow gravity mode" at low frequency.

f = /N] = 0.5, in a moderate magnetic field.
ac

(b) Wave vector surface of magnetic "fast" mode in same case.

scale alony each axis is + 1/H.

Full




Fig. 14
Fig. 1%
i Fig. 15
Fig. 17
Fig. 18

Wave vector surface at low frequencv, to= /N = 0.5, in a strony
A

magnetic field. Bulge is magnetic pressure tast mode. Other mode

is a plane through origin. Full scale along cach axis is * 0.1/H.

(a) Slice through wave vector surface at low frequency,

f = ﬂ/N"c = 0.5, in a strong field.

(b) Imaginary part of k7 along the same slice. Units are H

(a) Slice through wave vector surface at low frequency,

f = m/N_IC = 0.5, in a strong magnetic field, in a direction

perpendicular to the §0—g plane, ¢ = 900.

(b) TImaginary part of kz along the same slide. Units are H

(a) Slice through the wave vector surface at low frequency

. . 6]
f = w/NaC = 0.5, in a nearly vertical, 8 = 5 , strong magnetic

field.

(b) Imaginary part of kz along the same slice. Units are H-l.

Wave vector surface for nearly horizontal magnetic field, 8= 850,
at frequency, f = m/Na = 0.5, in a moderate magnetic field.

c
Th : . . 2 2.k
e cutoff frequency in this case is NaC s/(s” +a")* =0.58 N
: ac.
The inner fast mode surface is similar to the magneto-gravity

mode surface . (Schwartz and Stein, 1975 fig. 3b).

Hexagonal planform f(x,y).
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FLUX vs. PISTON AMPLITUDE
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